
GeneralSimulationLibrary
Release 1.0.0

Aug 14, 2020

Contents:

1 Introduction 3

2 Installation 5

3 Examples 7

4 How to use it 9

5 SimulationInterface class 13

6 Acknowledgements 15

7 Links and References 17

Index 19

i

ii

GeneralSimulationLibrary, Release 1.0.0

GenericSimulationLibrary is a package encapsulates a methodology and tools for reproducible simulations. The
main idea is to use python and/or jupyter notebooks to provide a lightweight and for-dummies easy “Simulation as a
Service”. The framework puts emphasis on simplicity: for the client to install and use, for the programmer to distribute
and update, and for everyone to store and reproduce results. The framework can be personalized and extended for a
specific simulation need.

Contents: 1

GeneralSimulationLibrary, Release 1.0.0

2 Contents:

CHAPTER 1

Introduction

1.1 Why do we care so much?

In 2008, we started the development of numerical implementation of generic reaction diffusion equations of catalysts
immobilized on small porous particles. Python was a great choice back then, as it provided a language that was simple
and high level, but still fast enough. Nevertheless, the python installation, versioning and library updates were messy
and required constant supervision and side by side work. We longed for a simpler method. Fast travel to 2020, where
you can now run python code on your browser on a server. You can now really collaborate with anyone on the planet
and make sure the simulation is being run exactly as supposed. We’ve been reflecting on the key elements that are
required on a simulation framework that provides this kind of “SaaS behavior”. How could you make things as easy
as possible for the other party while, as a developer, still been able to have full control on the code and guarantee the
reproducibility of results?

1.2 Objective

The objective is to provide a working answer for the following constrains:

• Dealing with installation and versioning of python, jupyter and libraries.

• Simplifying the deployment and versioning of a specific piece of code (the custom simulation library).

• Exposing a simple interface to the final user to hied a (complex) numerical implementation.

• Allowing to store and share simulation results, so that they can be reproduced and analyzed.

• Allowing to use external computational resources, so that the simulation doesn’t take a toll on your cheap
notebook.

1.3 Solution

We think the objetive can be obtained with a code with the following characteristics:

3

GeneralSimulationLibrary, Release 1.0.0

• pip-installable library: this allows for a flexible approach. You can install nothing at all and run everything on
google colab, or install it locally. But it’s your call, and you are not forced to run everything on local (thanks
free cloud providers!). This addresses for installation and versioning.

• git-versioning and library versioning: smash those bugs and document the code increments. This addresses
reproducibility and versioning.

• simple interface: hide the complexity of the code with some OO to make it simple for the end user.

• simulation seed: the library should create a “simulation seed” that contains all the information (inputs, system
and libraries configuration, options and outputs). This “simulation seed” can be stored and shared on itself, or
together with a jupyter notebooks. This addresses the reproducibility.

1.4 Limitations

• Does not contains any Monthy Python jokes. If you have a good one, please send it!

• It’s just a framework with simplistic inputs and simulation code. You will need to personalize the class Simula-
tionInterface and all its methods.

4 Chapter 1. Introduction

CHAPTER 2

Installation

The repository for the code is hosted at https://github.com/sebastiandres/GenericSimulationLibrary.

The current implementation has been developed in Python 3.

To use it the simulation code, you should consider using the standard libraries numpy and matplotlib. , sphinx and
sphinx-rtd-theme.

To use this project’s code and personalize it, you should consider the libraries numpy and matplotlib for simulation,
sphinx and sphinx-rtd-theme for documentation, and twine.

2.1 Install from pypi

You can install the library from pypi. This is good for testing the library, but will not allow you to personalize the
code.

pip install GenericSimulationLibrary

2.2 Install from repository

You can install the library from github. This is good for testing the library, but will not allow you to personalize the
code.

pip install git+https://github.com/sebastiandres/GenericSimulationLibrary.git

2.3 Clone repository and install

You can clone the library from github. This is good for testing the library and will allow you to personalize the code.

5

https://github.com/sebastiandres/GenericSimulationLibrary
https://pypi.org/project/GenericSimulationLibrary/

GeneralSimulationLibrary, Release 1.0.0

git clone https://github.com/sebastiandres/GenericSimulationLibrary.git
cd GenericSimulationLibrary
python setup.py install

2.4 Clone repository and install, but record installation files

Optionally, record the files installed, in case you want to remove them later:

python setup.py install --record installation_files.txt

To uninstall removing the files:

cat installation_files.txt | xargs sudo rm -rf

6 Chapter 2. Installation

CHAPTER 3

Examples

3.1 Example in Google colab

Here is an executable example using Google Colab. Requires a google account (but it’s worth it :).

3.2 Example in mybinder

Here is an executable example using MyBinder. Does not requires any account, but it will not store results.

3.3 Code example

To run it, you need to install the library.

To run and save a simulation:

from GenericSimulationLibrary import SimulationInterface

inputs = {
"x_min":0,
"x_max":10,
"N_points":12,
"m":3.0,
"b":-2.0

}
plot_options = {

"xlabel":"x [x_units]",
"ylabel":"y [y_units]",
"title":"My title",
"data_x":[0.1, 2.1, 3.9, 6.1, 7.9, 9.9],
"data_y":[-2.8, 3.6, 10.7, 13.6, 22.8, 27.1], # -2 + 3*x + error

(continues on next page)

7

https://colab.research.google.com/drive/1mfSZQOhe7qq1C-YpfX5dDpSedXGVjz4e?usp=sharing
https://mybinder.org/v2/gh/sebastiandres/GenericSimulationLibrary/master?filepath=tests%2Fjupyter_test.ipynb

GeneralSimulationLibrary, Release 1.0.0

(continued from previous page)

"data_kwargs": {'label':'exp', 'color':'red',
'marker':'s', 'markersize':6,
'linestyle':'none','linewidth':2,

},
"sim_kwargs": {'label':'sim', 'color':'black',

'marker':'o', 'markersize':6,
'linestyle':'dashed','linewidth':2,

},
}
filepath = "/test.sim"
print("Sim file:", filepath)

SI = SimulationInterface()
SI.new(inputs, plot_options)
SI.simulate()
SI.save(filepath)
SI.status()
del SI

To load a simulation and plot the results:

from GenericSimulationLibrary import SimulationInterface
SI_2 = SimulationInterface()
SI_2.load(filepath)
SI_2.plot(filename="test.png")
SI_2.status()

As you can see, all you need is to define the inputs and plot options, and run the simulation. Libraries and outputs are
silently handled. Saving, plotting or exporting the results is trivially easy for the user.

8 Chapter 3. Examples

CHAPTER 4

How to use it

Ok, I’m in. What should I do?

4.1 Considerations

Through this explanation, let’s asume you have the username my-username, that you will rename the project name
from GenericSimulationLibrary to MyProject and that you will rename the class SimulationInterface to MyInterface.

4.2 Getting the code and versioning

You should start by getting a copy of the repo to play around: https://github.com/sebastiandres/
GenericSimulationLibrary.

There are several ways to do this.

The first option: if you have a github account, you can fork the project to your github account. You can then clone
your project to your local environment to start making changes:

git clone https://github.com/PUT-YOUR-USERNAME-HERE/GenericSimulationLibrary.git

The second option is to download the zip file of the repository from the repository github’s webpage. This allows to
start with no previous commits. But now you need to add the project to your github account.

In both cases, you’ll have full control to version the project and push your changes. You should end up with a project
stored at https://github.com/my-username/MyProject

Test it by making a small change of the README.md, making a commit and pushing it. If you don’t know how to do
any of those, look at a tutorial like https://try.github.io/.

It may look as a overkill to do git-versioning and library versioning for your small project. It is not. Learn the tools
and you will save an HUGE amount of time and frustration. Smash those bugs and document the code increments.

9

https://github.com/sebastiandres/GenericSimulationLibrary
https://github.com/sebastiandres/GenericSimulationLibrary
https://github.com/sebastiandres/GenericSimulationLibrary/archive/master.zip
https://try.github.io/

GeneralSimulationLibrary, Release 1.0.0

4.3 Personalize the Simulation Code

The provided code already takes into account a simple interface and the creation of a simulation seed. Henceforth,
code complexity is been hiden from the end user and a “simulation seed” can store all the information (inputs, system
and libraries configuration, options and outputs) to guarantte reproducibility.

To personalize the code, you need to replace the mentions to GenericSimulationLibrary and SimulationInterface
with the choosen names, in this example, MyProject and MyInterface. You should edit the files at GenericSimulation-
Library/GenericSimulationLibrary/ (in your project shoul be at MyProject/GenericSimulationLibrary/), in particular
simulation_interface.py and __init__.py. You can add more files if needed.

The code version is centralized and stored at MyProject/GenericSimulationLibrary/version.py. Follow some updating
rule.

4.4 Personalize the Documentation

The documentation is stored at GenericSimulationLibrary/docs/source/ (in your project shoul be at MyPro-
ject/docs/source) You should personalize all the rst files. The files should give you some pointers on how to use,
but you can consult the rst specification

To rebuilt the documentation, execute the following at the path GenericSimulationLibrary/docs/ (or MyProject/docs/
at your project):

make clean
make html

You can check how the documentation turn out at GenericSimulationLibrary/docs/build/ (or MyProject/docs/build at
your project), the main file being index.html.

You can now go to read-the-docs and import your library documentation to make it public.

4.5 Distribution

The project is a pip-installable library. This has been taken care in the project structure and the file setup.py. You
should edit setup.py and own it: make the changes of library name, version, author, packages, repository url, licence
and description.

The project can be distributed from day one from the github repository.

If you have a stable version, that you would like to distribute through pypi. There’s a nice pypi tutorial you can follow.

You need to have installed twine (pip intall twine), and to have accounts at pypi and test.pypi. Note that that they
required different accounts.

First, at the main folder, test the distribution at testpypi:

python setup.py sdist bdist_wheel
python -m twine upload --repository testpypi dist/*

There’s a Makefile, so you can also just do make test.pypi at GenericSimulationLibrary/ (in your project shoul be at
MyProject/)

You can check how everything looks at https://test.pypi.org/. If everything is looking good, upload it to (real) pypi:

10 Chapter 4. How to use it

https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://readthedocs.org/
https://packaging.python.org/tutorials/packaging-projects/
https://pypi.org/
https://test.pypi.org/
https://test.pypi.org/

GeneralSimulationLibrary, Release 1.0.0

python setup.py sdist bdist_wheel
python -m twine upload --repository pypi dist/*

Using the Makefile, you can just do make pypi at GenericSimulationLibrary/ (in your project shoul be at MyProject/)

4.5. Distribution 11

GeneralSimulationLibrary, Release 1.0.0

12 Chapter 4. How to use it

CHAPTER 5

SimulationInterface class

This is the proposed class and its methods, that you should personalize to your needs.

class simulation_interface.SimulationInterface
Bases: object

GenericSimulationLibrary is a package encapsulates a methodology and tools for reproducible simulations. The
main idea is to use python and/or jupyter notebooks to provide a lightweight and for-dummies easy “Simulation
as a Service”. The framework puts emphasis on simplicity: for the client to install and use, for the programmer
to distribute and update, and for everyone to store and reproduce results. The framework can be personalized
and extended for a specific simulation need. Link: https://generalsimulationlibrary.readthedocs.io/

download(filename)
Utility to download file, using colab

export_xlsx(filename)
Creates an excel file and saves the plot data and simulation data. It helps providing a file format that final
users might be more familiar with.

Parameters filename (string) – Name for the file.

interactive_plot()
[summary]

load(filename)
Loads a simulation from a simulation file generated with the save method to restore the simulation.

Parameters filename (string) – Name for the simulation file.

new(inputs, plot_options=None)
Associates inputs and plot options to the simulation.

Parameters

• inputs (dict) – The inputs that will be used in the simulation. This can be completely
personalized.

• plot_options (dict, optional) – The plot options, defaults to None

13

https://generalsimulationlibrary.readthedocs.io/

GeneralSimulationLibrary, Release 1.0.0

plot(filename=”, display=True)
Conditionally imports the matplotlib library, and if possible, plots the experimental data given in
plot_options, and the simulation data.

Parameters

• filename (str, optional) – Filename to save the graph. If not provided, figure is
not saved. Defaults to ‘’.

• display (bool, optional) – Boolean to show (True) or not show (False) the graph.
Defaults to False

save(filename)
Saves the current state of the simulation, with all the provided information. The created file can be used
with the load method to restore the simulation.

Parameters filename (string) – Name for the simulation file.

simulate()
Conditionally imports the numpy library.

status()
Prints out the detected configuration: environment, python and library versions.

14 Chapter 5. SimulationInterface class

CHAPTER 6

Acknowledgements

We stand on the shoulder of giants.

We would like to thank:

• The python ecosystem: python and a large list of libraries (numpy, scipy, matplotlib, among many others).

• The Jupyter Notebooks: the game changer in using python interactive and documentable.

• Colab and Mybinder: for making easy to share and run jupyter notebooks.

• Read the docs: for making very easy to make and share good documentation.

15

GeneralSimulationLibrary, Release 1.0.0

16 Chapter 6. Acknowledgements

CHAPTER 7

Links and References

7.1 Documentation

• reStructuredText (rst) Markup Specification: https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html

• Documentation with sphinx and read the Docs: https://sphinx-rtd-tutorial.readthedocs.io/en/latest/

7.2 Versioning

• Github Tutorial: https://try.github.io/.

7.3 Distribution

• How to pack a library for distribution with pypi: https://packaging.python.org/tutorials/packaging-projects/

7.4 Generic Simulation Library Repositories

• Code: the framework, a work in progress: https://github.com/sebastiandres/GenericSimulationLibrary

7.5 Reproducibility

• Post: Lorena Barba’s group reproducibility syllabus: https://lorenabarba.com/blog/
barbagroup-reproducibility-syllabus

17

https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/
https://try.github.io/
https://packaging.python.org/tutorials/packaging-projects/
https://github.com/sebastiandres/GenericSimulationLibrary
https://lorenabarba.com/blog/barbagroup-reproducibility-syllabus
https://lorenabarba.com/blog/barbagroup-reproducibility-syllabus

GeneralSimulationLibrary, Release 1.0.0

18 Chapter 7. Links and References

Index

D
download() (simulation_interface.SimulationInterface

method), 13

E
export_xlsx() (simula-

tion_interface.SimulationInterface method),
13

I
interactive_plot() (simula-

tion_interface.SimulationInterface method),
13

L
load() (simulation_interface.SimulationInterface

method), 13

N
new() (simulation_interface.SimulationInterface

method), 13

P
plot() (simulation_interface.SimulationInterface

method), 13

S
save() (simulation_interface.SimulationInterface

method), 14
simulate() (simulation_interface.SimulationInterface

method), 14
SimulationInterface (class in simula-

tion_interface), 13
status() (simulation_interface.SimulationInterface

method), 14

19

	Introduction
	Installation
	Examples
	How to use it
	SimulationInterface class
	Acknowledgements
	Links and References
	Index

